

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 2, July - September 2013

ISSN: 2349 - 6363
112

Memory Based FIR Filter Design on FPGA using

Distributed Arithmetic and OBC Coding Technique

M Mahalingam

Electronics and Communication Engineering

Kumaraguru College of Technology

Coimbatore, India

ammahalingam@gmail.com

S Govindaraju

Electronics and Communication Engineering

Kumaraguru College of Technology

Coimbatore, India

govindaraju.s.ece@kct.ac.in

Abstract-This paper provides an efficient implementation of FIR filter without using multipliers. Area

complexity in an algorithm of finite impulse response (FIR) filter is mainly caused by multipliers. Among

the multiplierless implementation of FIR filter, Distributed Arithmetic (DA) is most efficient technique. In

Distributed Arithmetic inner products are precomputed and stored in Look Up Table (LUT), than this

precomputed values are added and shifted with number of times equal to the precision of input samples. If

filter order increases than Look Up Table size also increases in its basic structure, makes it inefficient for

many applications. In order to eliminate exponential growth of LUT with the order of filter we use memory

partitioning (slicing) technique. We presented 16-tap FIR filter, with different size of memory partitioning

of LUT and combine with OBC Coding. Implementation and synthesis result shows drastic improvement

in performance in terms of speed as well as saving in area, with more number of slices.

Keywords-Finite Impulse Response, multiplierless, distributed arithmetic, Field Programmable Gate Array, OBC

Coding

I. INTRODUCTION

 Finite Impulse Response (FIR) filters have played a central role in digital signal processing because of its
advantages. FIR filter can implement linear-phase filtering. This means that the filter has no phase shift across the
frequency band. Alternately, the phase can be corrected independently of the amplitude and it can be used to
correct frequency –response errors in a loudspeaker to a finer degree of precision than using Infinite Impulse
Response filters. FIR has desirable numeric properties. In practice, all DSP filters must be implemented using
finite-precision arithmetic, that is, a limited number of bits. The use of finite-precision arithmetic in IIR filters can
cause significant problems due to the use of feedback, but FIR filters without feedback can usually be implemented
using fewer bits, and the designer has fewer practical problems to solve related to non-ideal arithmetic, they can
be implemented using fractional arithmetic. Unlike IIR filters, it is always possible to implement a FIR filter using
coefficients with magnitude of less than 1.0. (The overall gain of the FIR filter can be adjusted at its output, if
desired.) .

This is an important consideration when using fixed-point DSP's, because it makes the implementation much
simpler. In general FIR filter is characterized by

𝑦 = ∑ AnXn
𝑘
𝑛=1 (1)

 Equation (1) shows that, large number of multiplication involved in implementing FIR filter. Multiplier

caused large delay and area in VLSI implementation. So most of the researcher doing research in multiplierless

implementation. In multipliered FIR filters area is reduced by means of sharing of multipliers or by manipulating

the coefficients so we can reduce the number of multiplication. Distributed Arithmetic Technique and Constant

Coefficient Multiplier comes under multiplierless implementation. Computation Sharing Differential Coefficient

(CSDC) method, which can be used to obtain low-complexity multiplierless implementation of finite-impulse

response (FIR) filters[1], this method is applicable to signal processing tasks involving multiplications with a set

of constants. Look Up Table optimization for memory-based computation which gives idea about reduction of

memory requirement based on antisymmetric product coding (APC) and Odd Multiple Storage (OMS) techniques

[2]. Partial LUT Size Analysis in Distributed Arithmetic FIR Filters on FPGAs which can be used to reduce

memory requirement by means of partial LUT slicing concept[3] Moreover, the OMS scheme in [2] does not

provide an efficient implementation when combined with the APC technique. In this brief, we therefore present

a slicing concept combined with an OBC coding for efficient memory based multiplication. This paper is

organized as follows.

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 2, July - September 2013

113

 The review of basic Distributed Arithmetic Technique is given in Section II and in Section III architecture of

Distributed Arithmetic Technique is presented, and also implementation steps based on memory partitioning is

given. Section VI gives implementation of distributed arithmetic architecture using offset binary coding. Section

V gives DA architecture implementation combine with LUT slicing and offset binary coding and Section VI gives

area utilization and performance of the proposed DA architecture. Its comparison with previous work is also

presented. At the last conclusions are given in section VII.

II. DISTRIBUTED ARITHMETIC

Distributed arithmetic is an efficient procedure for computing inner products between a fixed and a variable
data vector. The basic principle is owed to Croisier et al. (Patent), and Peled and Liu have independently presented
a similar method. Distributed Arithmetic is bit-serial in nature. It can therefore appear to be slow. When the
number of elements in a vector is nearly the same as the word size, than DA is quite fast. Area savings from using
DA can be up to 80% in DSP hardware designs.

Consider general FIR filter equation from (1), Where the coefficients An, n= 1, 2, 3 . . . m are fixed. A two’s-
complement representation is used for the data components which are scaled so that |xn |≤ 1. Let xn be an N-bit
scaled two’s complement number. In other words,

 𝑋𝑛 = −𝑋𝑛0 + ∑ 𝑋𝑛𝑚2−𝑚𝑁−1
𝑚=1 (2)

The inner product can be rewritten

𝑦 = ∑ 𝐴𝑛
𝑘
𝑛=1 [−𝑋𝑛0 + ∑ 𝑋𝑛𝑚 2

−𝑚𝑁−1
𝑚=1] (3)

Where 𝑋𝑛𝑚is the mth bit in Xn, By interchanging order of two summations we get

𝑦 = − ∑ 𝐴𝑛
𝑘
𝑛=1 𝑋𝑛0 + ∑ [∑ 𝐴𝑛𝑋𝑛𝑚

𝑘
𝑛=1]𝑁−1

𝑚=1 2−𝑚
 (4)

Which can be written as

𝑦 = −𝐹0(𝑋10, 𝑋20, … . , 𝑋𝐾0) + ∑ 𝐹𝑚
𝑁−1
𝑚=1 (𝑋1𝑚, 𝑋2𝑚, … . , 𝑋𝑘𝑚)2−𝑚 (5)

From (5) we can observe that the inner product take one of the possible 2k values given that X€{0,1}, and this
2k values are correspond to all possible sum combinations of filter coefficient. These values are precomputed
computed and stored in memories, addressed by Xnm thus; the multiplier required for MAC algorithm of FIR
filter is eliminated by means of LUT access and summations. Analysis shows that; the direct implementation of
filter from (1); the number of MAC units increases with increase in the filter order so this will cause more delay
and area consumption, whereas in DA architecture based hardware in critical path is decoupled from the order of
filter. Hence this architecture is most preferred one for implementing algorithm in Field Programmable Gate
Array.

III. DISTRIBUTED ARTHIMETIC ARCHITECTURE

 Figure 1. Basic architecture of distributed arithmetic Figure 2. DA Architecture with Partition 4

S

H

I

F

T

R

E

 ARITH TABLE

ACCUMULATOR

2-1

Xn2 ………….X12 X02

Xn1………….X11 X01

 XnN-1 ……X1N-1 X0N-1

Xn0 …………X10 X00

 L
oo

k
U

p
Ta

bl
e

+/

-

 R
EG

y

 SHIFT REGISTER

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 2, July - September 2013

114

In basic architecture of Distributed Arithmetic (Figure 1), the size of Look up Table increases rapidly with the
order of filter.

To avoid this drawback the main idea followed by this research is slicing of Look Up Table into desired
number. By this technique we reduce the size of memory, with small increase in area requirement due to adders.
For example if filter order is 16 then 65536 memory locations are needed for implementing filter without slicing
concept. With LUT slicing by a factor four reduces the memory locations to 64. This sliced Look Up Table
architecture on FPGA have Registers, sliced Look Up Table units and the accumulator unit.

In Look up Table slicing concept large Look Up Table is divided into small size Look Up Table, then partial
product is calculated by means of adding the result of small size

I. Register

Input samples Xn of data width N stored in input register (Figure 3). Input samples are given in parallel form
so we need to convert these parallel samples into serial form in order to get address for LUT. these parallel formed
input samples are converted into serial form advanced to right for every clock, so as we create an address of Look
Up Table.

Figure 3. Register

II. LUT Slicing

Distributed Arithmetic is efficient only when filter order is low. If filter order is high then LUT size will
increases rapidly, for example for 16-tab filter 65536 locations are needed for implementation. This reduces the
performance of the system. So, we need to reduce the memory requirement to acceptable level in order to increase
the system performance. Structure of LUT without slicing is shown in Figure 4. To reduce the size of LUT we
subdivided the large LUT into a number of small size LUTs, called LUT partitioning. Each partitioned LUT
operates on a different set of filter coefficient. LUT with partitioning is shown in Figure 5.

 Figure 4. LUT Structure Figure 5. LUT with partitioning

Input signal

a0

a1

a2

aN-1 XN-1

 X2

 X1

 X0

 Look Up Table

Partial

Product

Addressed

by a15 - a0

Partial Product

 ADDER TREE

LUT0 LUT1 LUT

2

LUT

4

a7-

a4

a11-

a8

a15-a12 a3-a0

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 2, July - September 2013

115

In this work analysis of 16-tab FIR filter is carried out on various size of partitioning. Details of LUT with
partitioning by a factor 4 are shown in Figure 5. Partial product term can be calculated by adding the output of all
slices by adder tree. Further, by taking the number of accumulation and shift operation, final output is calculated.

a3 a2 a1 a0 Data

0 0 0 0 0

0 0 0 1 A0

0 0 1 0 A1

0 0 1 1 A0+A1

0 1 0 0 A2

0 1 0 1 A2+A0

0 1 1 0 A2+A1

0 1 1 1 A2+A1+A0

1 0 0 0 A3

1 0 0 1 A3+A0

1 0 1 0 A3+A1

1 0 1 1 A3+A1+A0

1 1 0 0 A3+A2

1 1 0 1 A3+A2+A0

1 1 1 0 A3+A2+A1

1 1 1 1 A3+A2+A1+A0

Figure 6. 24 Word LUT of Data

III. Accumulator and Shifter Unit

This phase consists of an accumulator and shifter. The partial product is generated by adding outputs of LUTs.
Partial product generated by LUTs is added and shifted in every iteration. Number of iteration is equal to the input
precision.

IV. Control Unit

Control unit used to control circuit components behaviour and the whole circuit behaviour. In Distributed
Arithmetic control unit is counter whose upper limit depends basically on the input precision and defines the
circuit throughput. Compare with other methods, an advantage of distributed Arithmetic is that the throughput in
DA-based architectures is independent of the order of the filter.

IV. DISTRIBUTED ARITHMETIC USING OFFSET BINARY CODING

The memory size may be reduced from LUT slicing concept. Again memory size may be halved to 1/2(2n)
with the help of LUT slicing combine with offset binary coding. in order to understand how memory size will
reduced by offset binary coding, we interpret the input data as being cast not in a (0.1) straight binary code, but
instead as being cast in (-1, 1) offset binary code. if we represent input as

Xn=1/2 [Xn- (-Xn)] (6)

-Xn can be represent as

−Xn = −bn(N−1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2(N−1) + ∑ −bnm

̅̅ ̅̅ ̅̅ ̅2n N−2
n=1 + 1 (7)

Where the overscore symbol indicates the negation of bit. From (6) and (7)

 Xn = 1/2[−(bn(N−1) − bn(N−1)
̅̅ ̅̅ ̅̅ ̅̅ ̅)2(N−1) + ∑ (bnm − bnm

̅̅ ̅̅ ̅)2nN−1
m=1 − 1] (8)

For simplification

c nm = bnm − bnm
̅̅ ̅̅ ̅ n ≠ N − 1 (9)

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 2, July - September 2013

116

𝑐 𝑛(𝑁−1) = 𝑏𝑛(𝑁−1) − 𝑏𝑛(𝑁−1)
̅̅ ̅̅ ̅̅ ̅̅ (10)

From (1) and (8)

 y = 1
2⁄ ∑ An

k
n=1 [−(bn(N−1) − bn(N−1)

̅̅ ̅̅ ̅̅ ̅̅ ̅)2(N−1) + ∑ (bnm − bnm
̅̅ ̅̅ ̅)2nN−1

m=1 − 1] (11)

 y = ∑ Q(bn)k
n=1 + Q(0) (12)

𝑄(𝑏𝑛) = ∑
𝐴𝑛

2
𝑐𝑛𝑚 2𝑛 𝑛 ≠ 𝑁 − 1 𝑎𝑛𝑑 𝑄(0) = − ∑

𝐴𝑛

2

𝑘
𝑛=1

𝑘
𝑛=1 (13)

𝑄(𝑏𝑁−1) = − ∑
𝐴𝑛

2
𝑐𝑛(𝑁−1) 2(𝑁−1) 𝑛 = 𝑁 − 1 𝑘

𝑛=1 (14)

Note that memory size will be reduced from 2n to 2n-1

Figure 7. DA Architecture with offset binary coding

V. DISTRIBUTED ARCHITECTURE COMBINE WITH LUT SLICING AND OFFSET BINARY CODING

Input Code

 b1n b2n b3n b4n

8-Word

Memory Contents,Q

0 0 0 0

0 0 0 1

0 0 1 0
0 0 1 1

0 1 0 0

0 1 0 1
0 1 1 0

0 1 1 1

-1/2(A1+A2+A3+A4)

-1/2(A1+A2+A3- A4)

-1/2(A1+A2-A3+ A4)
-1/2(A1+A2-A3- A4)

-1/2(A1-A2+A3+ A4)

-1/2(A1- A2+A3- A4)
-1/2(A1- A2-A3+ A4)

-1/2(A1-A2- A3 - A4)

1 0 0 0

1 0 0 1
1 0 1 0

1 0 1 1

1 1 0 0
1 1 0 1

1 1 1 0

1 1 1 1

1/2(A1- A2- A3-A4)

1/2(A1- A2- A3+A4)
1/2(A1- A2+A3- A4)

1/2(A1- A2+A3+A4)

1/2(A1+A2- A3- A4)
1/2(A1+A2- A3+A4)

1/2(A1+A2+A3- A4)

1/2(A1+A2+A3+A4)

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 2, July - September 2013

117

If LUT is sliced into two then output is given by

 y = ∑ 𝐴𝑛𝑋𝑛 + ∑ 𝐴𝑛𝑋𝑛 𝑘

𝑛=
𝑘

2
+1

𝑘
2⁄

𝑛=1 (15)

From (14) and (15)

y = ∑ Qbn2−nk/2
n=1 + 2−(N−1)Q(0) + ∑ Qbn2−nk

n=
k

2
+1

+ 2−(N−1)Q(0) (16)

From above equations (5), (15) and (16) we can conclude that for k-tab filter memory requirements are
2k,2(2k/2) , 2(2(k/2)-1) respectively. For example if filter order is 8 than memory requirements are 256(without
slicing), 32(sliced by 2), 16(slicing by 2 combine with OBC) locations respectively. Architecture combine with
LUT slicing and offset binary coding is efficient in terms of memory as well as delay so proposed architecture is
efficient compare to existing methods.

VI. IMPLEMENTATION RESULT AND PERFORMANCE ANALYSIS

Xilinx Integrated Environment (ISE) is used for synthesis and implementation of a design. FIR filter is
designed and implemented with fixed filter coefficient. In order to evaluate performance of the proposed scheme
first filter is designed using MATLAB tool from this collect the filter coefficient and then coefficients are
truncated and scaled with 8 bits of precision. The Magnitude and phase response of the design filter in MATLAB
is shown in Figure 9.

Figure 9. Magnitude and Phase Response of FIR Filter using MATLAB

Figure 10. Coefficients calculation using MATLAB

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 2, July - September 2013

118

Figure 11. Normalised value of coefficients and its 2’s complement equivalent

Figure 12. Simulation Result for Partial Product evaluation with address size of 4

Figure 13. Simulation Result for Partial Product evaluation with address size of 2

Figure 14. 16-tap FIR filter output

Figure 15. 8-tap FIR filter output

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 2, July - September 2013

119

Table I: PERFORMANCE COMPARISONS OF FIR FILTER

Filter
order

Parameter Conventional
FIR

FIR Without
Partitioning

FIR With
Partitioning Size

of 4

FIR With
Partitioning Size

of 2

FIR Combine With
Partitioning and

OBC Coding

 16

Slices 700 558 321 296 280

Delay(ns) 46.02 28.85 24.45 22.67 20.73

Power (mw) 85.48 46.08 37.45 32.45 28.62

Memory(Kb) - 245048 209622 198632 193654

 8

Slices 365 282 171 162 158

Delay 28.32 22.47 19.83 18.26 16.86

Power (mw) 52.34 31.03 27.24 25.53 23.40

Memory(Kb) - 213462 195752 185473 180214

VII. CONCLUSION

Distributed Arithmetic Architecture combine with LUT slicing and OBC coding has proved to be an efficient
technique for FIR filter implementation. Because of its highly flexible nature of this structure, allow it to use in
complete serial to full parallel form and also Distributed arithmetic architecture combine with Look Up Table
slicing and OBC coding decreases the memory requirements for FIR implementation compared with distributed
arithmetic architecture without LUT slicing. Compared with conventional FIR implementation (multiplier based
DA architecture combine with LUT slicing and OBC coding reduces the delay present in a system .

REFERENCES

[1] M. Kumm, K. M¨oller, and P. Zipf, “Partial LUT Size Analysis in Distributed Arithmetic FIR Filters on FPGAs”, in Circuits

and Systems, IEEE Int. Sym. on (ISCAS), 2013.

[2] Pramod Kumar Meher, SeniorMember,IEEE, “LUT Optimization for Memory Based Computation”, IEEE Transactions on

circuits and Systems, Vol. 54, No. 4, pp.245-252, April 2010.

[3] S. Mirzaei, R. Kastner, and A. Hosangadi, “Layout aware optimization of high speed fixed coefficient FIR filters for

FPGAs”, Int. Journal of Reconfigurable Computing, Vol. 3, pp. 1–17, Jan 2010.

[4] S. Mirzaei, A. Hosangadi, and R. Kastner, “FPGA Implementation of High Speed FIR Filters Using Add and Shift Method”,

IEEE, International Conference on Computer Design (ICCD), pp. 308-313, April 2010.

[5] J. Park, K. Muhammad, and K. Roy, “High-Erformance Fir Filter Design Based On Sharing Multiplication”, IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 11, No. 2, April 2003, pp.244-253.

[6] M. Yamada, and A. Nishihara, “FIR Digital Filter with CSD Coefficients Implement on FPGA”, in Proceedings of IEEE

Design Automation Conference, pp. 7-8, 2001.

